Oxygenated Lanostane-Type Triterpenoids from the Fungus Ganoderma lucidum

Toshihiro Akihisa,,${ }^{, \dagger}$ Masaaki Tagata, ${ }^{\dagger}$ Motohiko Ukiya, ${ }^{\dagger}$ Harukuni Tokuda, ${ }^{\ddagger}$ Takashi Suzuki, ${ }^{\S}$ and Yumiko Kimura ${ }^{8}$
College of Science and Technology, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan, Department of Biochemistry, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-0841, Japan, and College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan

Received December 15, 2004

Two new triterpenoids, 20(21)-dehydrolucidenic acid A (1) and methyl 20(21)-dehydrolucidenate A (2), and five new 20 -hydroxylucidenic acids, 20 -hydroxylucidenic acid D_{2} (3), 20-hydroxylucidenic acid F (4), 20-hydroxylucidenic acid E_{2} (5), 20-hydroxylucidenic acid $\mathrm{N}(\mathbf{6})$, and 20-hydroxylucidenic acid $\mathrm{P}(7)$, were isolated from the fruiting body of the fungus Ganoderma ludicum, and their structures were established on the basis of spectroscopic methods.

The fruiting body of Ganoderma lucidum Karst (Polyporaceae), commonly known as the Reishi mushroom, is widely used in China, Japan, and Korea as a valuable crude drug, especially in the treatment of chronic hepatitis, nephritis, hepatopathy, neurasthenia, arthritis, bronchitis, asthma, gastric ulcer, and insomnia. ${ }^{1}$ Over one hundred oxygenated triterpenoids have been isolated from this mushroom. ${ }^{2-4}$ In the course of our search for potential antitumor-promoters (chemopreventive agents) from natural sources, ${ }^{5,6}$ we have isolated and characterized three new and 14 known oxygenated lanostane-type triterpenoids from the fruiting body of the fungus G. lucidum and have reported their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by $12-O$-tet-radecanoylphorbol-13-acetate (TPA). ${ }^{4}$ Our continuing study on the constituents of G. lucidum fruiting body led to the isolation of seven further new triterpenoids (1-7), and we report their structure elucidation in this paper.

Results and Discussion

The molecular formula of $\mathbf{1}$ was determined as $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{6}$ from its HREIMS ($[\mathrm{M}]^{+} m / z 456.2512$) as well as from its ${ }^{13} \mathrm{C}$ NMR DEPT. The UV absorbance at 253 nm indicated the presence of an α, β-unsaturated ketone system. Its IR absorption bands suggested the presence of hydroxyl (3445 cm^{-1}), carbonyl ($1735 \mathrm{~cm}^{-1}$), carboxyl ($1659 \mathrm{~cm}^{-1}$), and terminal methylene ($897 \mathrm{~cm}^{-1}$) groups. The ${ }^{1} \mathrm{H}$ NMR spectrum showed signals for five tertiary methyl [$\delta_{\mathrm{H}} 0.90$, $1.11,1.13,1.26$, and 1.39 (each s)], a terminal methylene [$\delta_{\mathrm{H}} 4.91$ and 5.08 (each 1 H and s)], and an oxymethine [δ_{H} 4.87 (dd, $J=7.6,9.6 \mathrm{~Hz}$)] groups (Table 1). The ${ }^{13} \mathrm{C}$ NMR, combined with DEPT and HMQC, showed that 1 had five methyls, eight methylenes (including one sp^{2} methylene carbon), three methines (including one oxymethine carbon), seven quaternary carbons (including three sp^{2} carbons), and four carbonyls (including three ketones) (Table 1). The EIMS of 1 showed diagnostic fragment ions at $m / z 355$ $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{4}\right]^{+}$, corresponding to the loss of a side-chain $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)$ with concomitant 2 H loss, $318\left[\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{1}\right]^{+}$, formed by the loss of ring A by the cleavage of C-5-C-6 and C-9-

[^0]

$\mathrm{C}-10$, and $300\left[\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3}\right]^{+}$, due to the loss of ring D plus 2 H by the cleavage of $\mathrm{C}-13-\mathrm{C}-17$ and $\mathrm{C}-14-\mathrm{C}-15$. Comparison of these data with those of lucidenic acid $\mathrm{A}(7 \beta-$ hydroxy-3,11,15-trioxo-25,26,27-trinorlanost-8-en-24-oic acid) $)^{4,7,8}$ suggested that compound 1 possesses the same structure as that of lucidenic acid A with the exception of the side-chain. Compound $\mathbf{1}$ had an additional double bond in the side-chain as a terminal methylene group most probably located at C-20(21). The structure of compound 1 was, therefore, assigned as 7β-hydroxy- $3,11,15$-trioxo-25,26,27-trisnorlanosta-8,20(21)-dien-24-oic acid, which we
Table 1. ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$, and HMBC NMR Spectral Data for Triterpenoids $\mathbf{1 - 3}\left(\mathrm{CDCl}_{3}\right)$

C no.	1				2^{a}			3			
	$\delta_{\text {C }}$		$\delta_{\mathrm{H}}{ }^{\text {b }}$	HMBC (H to C)	$\delta_{\text {C }}$		$\delta_{\mathrm{H}}{ }^{\text {b }}$	$\delta_{\text {C }}$		$\delta_{\mathrm{H}}{ }^{\text {b }}$	HMBC(H to C)
1	35.7	t	α : 1.48 ddd ($8.2,8.6,13.8)$	2, 3, 9, 10, 19	36.0	t	$\alpha: 1.63$ ddd ($8.2,8.2,13.7)$	34.0	t	$\begin{aligned} & \alpha: 1.73 \text { ddd }(6.9,9.7,14.3) \\ & \beta: 2.76 \text { ddd }(6.3,8.3,14.3) \end{aligned}$	2, 10, 19
			$\beta: 2.95$ ddd ($5.2,7.6,13.8)$	2, 3, 5, 10, 19			$\beta: 3.18$ ddd (6.5, 6.5, 13.7)				2, 5, 10, 19
2	34.3	t	α : 2.45 ddd (5.2, 8.2, 16.5)	1, 3, 10	34.5	t	2.57 (2H) dd like (8.3, 8.3)	33.6	t	$\begin{aligned} & \alpha: 2.48 \text { ddd }(6.9,8.3,15.4) \\ & \beta: 2.60 \operatorname{ddd}(6.3,9.7,15.4) \end{aligned}$	1, 3, 4, 10
			$\beta: 2.53$ ddd (7.6, 8.6, 16.5)	1, 3, 10							1, 3, 10
3	216.5	S			215.9	S		214.9	S		
4	46.8	S			46.8	S		46.9	S		
5	49.0	d	1.58 dd (1.7, 13.7)	4, 7, 10, 19, 28, 29	48.9	d	1.76 dd (1.7, 13.7)	50.9	d	2.31 dd (2.3, 14.9)	1, 4, 6, 10, 28, 29
6	27.7	t	$\alpha: 2.12$ ddd $(1.7,7.6,13.1)$	7, 8, 10	29.1	t	$\alpha: 2.22$ ddd $(1.7,8.0,13.1)$	37.4	t	$\begin{aligned} & \alpha: 2.50 \mathrm{dd}(2.3,13.8) \\ & \beta: 2.74 \mathrm{dd}(13.8,14.9) \end{aligned}$	$5,7,10$
			$\beta: 1.68 \text { ddd }(9.6,13.1,13.7)$	5,7			$\beta: 1.87 \text { ddd }(9.3,13.1,13.7)$				
7	66.3	d	$4.87 \mathrm{dd}(7.6,9.6)$	6,9	65.7	d	5.19 dd (8.0, 9.3)	198.4	S		
8	157.8	s			159.8	S		145.6	S		
9	141.3	S			140.9	S		149.6	S		
10	38.3	S			38.5	S		39.3	S		
11	197.5	S			198.0	S		193.3	S		
12	49.1	t	$\alpha: 2.83 \mathrm{~d}(16.8)$	11, 13, 18	49.8	t	$\begin{aligned} & \alpha: 3.06 \mathrm{~d}(16.8) \\ & \beta: 2.80 \mathrm{~d}(16.8) \end{aligned}$	78.6	d	5.70 s	11, 13, 14, COMe
			$\beta: 2.65 \mathrm{~d}$ (16.8)	11, 14, 18							
13	45.3	S			45.5	S		47.9	S		
14	58.8	S			58.3	S		58.9	S		
15	217.7	S			215.5	S		203.8	S		
16	38.7	t	2.61 (2H) d like (9.0)	15	39.5	t	$\alpha: 2.62$ dd (7.6, 18.9)	35.4	t	$\alpha: 2.84$ dd (10.0, 18.3)	13, 15
							$\beta: 2.85$ dd (11.0, 18.9)			$\beta: 2.27 \mathrm{dd}(8.3,18.3)$	14, 15, 17, 20
17	46.3	d	3.01 dd (9.0, 9.0)	13, 16, 17, 18, 20, 24	46.7	d	3.12 dd (7.6, 11.0)	48.8	d	2.95 dd (8.3, 10.0)	13, 16, 18, 20
18	18.8	q	0.90 s	12, 14, 17	19.3	q	1.10 s	13.0	q	0.96 s	13, 14
19	18.2	q	1.26 s	1, 5, 9, 10	18.6	q	1.35 s	18.7	q	1.34 s	1, 5, 9, 10
20	143.9	S			145.8	S		86.4	S		
21	112.3	t	4.91 s, 5.08 s	17, 22	111.6	t	$4.93 \mathrm{~s}, 5.05 \mathrm{~s}$	26.1	q	1.49 s	17
22	31.3	t	$2.31(1 \mathrm{H})$ ddd (7.9, 7.9, 16.2)	20, 21, 22, 23, 24	31.8	t	2.36 (1H) ddd (7.2, 15.5, 16.2)	34.5	t	$\begin{aligned} & 2.04(1 \mathrm{H}) \text { ddd }(3.4,10.3,13.0) \\ & 2.10(1 \mathrm{H}) \text { ddd }(2.7,10.0,13.0) \end{aligned}$	21, 23, 24
			2.48 (1H) ddd (5.2, 7.9, 13.4)	20, 21, 22, 23, 24			2.48 (1H) ddd ($7.6,15.8,16.2$)				17, 21, 23
23	31.9	t	2.59 (2H) dd like (7.6, 7.6)	20,24	32.6	t	2.61 (2H) d like (7.2)	28.0	t	$\begin{aligned} & 2.56(1 \mathrm{H}) \mathrm{m} \\ & 2.69(1 \mathrm{H}) \mathrm{m} \end{aligned}$	22, 24
											22, 24
24	175.1	S			173.2	S		175.6	S		
28	27.0	q	1.13 s	5, 29	27.0	q	1.15 s	27.6	q	1.14 s	3, 4, 5, 29
29	20.8	q	1.11 s	3, 4, 28	20.9	q	1.12 s	20.4	q	1.12 s	3, 4, 5, 28
30	24.6	q	1.39 s	8, 13, 14, 15	25.2	q	1.43 s	21.1	q	1.85 s	8, 13, 14, 15
COMe								170.1	S		
COMe								21.0	q	2.26 s	COMe
COOMe					51.5	q	3.64 s				

[^1]named 20(21)-dehydrolucidenic acid A. Analysis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and NOESY spectra supported the proposed structure of $\mathbf{1}$.

Compound 2, $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{6}$ (HREIMS m/z $470.2668[\mathrm{M}]^{+}$), having 14 mass units $\left(\mathrm{CH}_{2}\right)$ higher than compound $\mathbf{1}$, showed ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR signal patterns very similar to those of 1 except for the presence of an additional methoxyl signal [$\delta_{\mathrm{C}} 51.5(\mathrm{q}) ; \delta_{\mathrm{H}} 3.64(3 \mathrm{H}, \mathrm{s})$] for 2 (Table 1). The methoxyl group was unambiguously assigned at C-24 as a methyl ester group due to the presence of a significant cross-peak ($\left.{ }^{3} J_{\mathrm{C}-\mathrm{H}}\right)$ between signals of $\delta_{\mathrm{H}} 3.64$ and $\delta_{\mathrm{C}} 173.2$ (C-24) in the HMBC spectrum. Hence, compound 2 was characterized as methyl 7β-hydroxy-3,11,15-trioxo-25,26,27-trisnorlanosta-8,20(21)-dien-24-oate [methyl 20(21)-dehydrolucidenate A]. Analysis of the UV, IR, and EIMS spectra (see Experimental Section) and the ${ }^{13} \mathrm{C}$ DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and NOESY spectra of 2 supported the proposed structure.

Compound 3 was assigned the molecular formula $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{9}$, as determined from its ${ }^{13} \mathrm{C}$ DEPT NMR, HREIMS ($\mathrm{m} / \mathrm{z} 512.2410\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$), and FABMS ($\mathrm{m} / \mathrm{z} 553$ [M $+\mathrm{Na}]^{+}$) data. The UV absorbance at 254 nm indicated the presence of an α, β-unsaturated ketone system. Its IR absorption bands suggested the presence of hydroxyl (3452 cm^{-1}), carbonyl ($1752 \mathrm{~cm}^{-1}$), and carboxyl ($1698 \mathrm{~cm}^{-1}$) groups. The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR data showed that compound 3 had six tertiary methyls, four ketones, a secondary acetoxyl, a tertiary hydroxyl, and a carboxyl group (Table 1). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ was very similar to that of lucidenic acid D_{2} (12 β-acetoxy-3,7,11,15-tetraoxo-25,26,27-trisnorlanost-8-en-24-oic acid). ${ }^{4}$ The only exceptions were that 3 exhibited the C- 21 methyl signal as a singlet (δ_{H} 1.49), instead of a doublet observed for lucidenic acid D_{2}, and the C-18 methyl singlet at somewhat lower field (δ_{H} 0.96) than lucidenic acid D_{2}, which suggested that 3 had the tertiary hydroxyl group at C-20. The presence of an EIMS fragment ion at $m / z 413$ [M - side-chain $\left.\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{3}\right)\right]^{+}$ was consistent with this supposition. The above evidence coupled with analyses of the ${ }^{13} \mathrm{C}$ DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and NOESY spectra allowed the assignment of 3 as (20ξ)-12 β-acetoxy-20-hydroxy-3,7,11,15-tet-raoxo-25,26,27-trisnorlanost-8-en-24-oic acid (20-hydroxylucidenic acid D_{2}).

Compound 4 was assigned the molecular formula $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{7}$ (HREIMS m/z $454.2355\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$; FABMS $m / z 495[\mathrm{M}+\mathrm{Na}]^{+}$), corresponding to one acetoxyl group (58 mass units: $\mathrm{CH}_{3} \mathrm{OCO}-\mathrm{H}$) less than that of $\mathbf{3}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 4 (Table 2), signals due to the ring system were in good agreement with those of lucidenic acid F (3,7,11,15-tetraoxo-25,26,27-trisnorlanost-8-en-24-oic acid), ${ }^{4}$ while the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR signals arising from the sidechain moiety were superimposable with those of $\mathbf{3}$. This suggested that 4 was a C-20-hydroxylated analogue of lucidenic acid F, viz., (20 $)$-20-hydroxy-3,7,11,15-tetraoxo-25,26,27-trisnorlanost-8-en-24-oic acid (20-hydroxylucidenic acid F). Analysis of the UV, IR, and EIMS spectra and the ${ }^{13} \mathrm{C}$ DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and NOESY spectra of 4 supported this conclusion.

Compound 5 had the molecular formula $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{9}$ (HREIMS m/z $514.2566\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$; FABMS $m / z 555[\mathrm{M}+\mathrm{Na}]^{+}$) and exhibited ${ }^{1} \mathrm{H}$ NMR signals (Table 2) for the ring-system moiety very similar to those of lucidenic acid $\mathrm{E}_{2}(12 \beta$ -acetoxy- 3β-hydroxy-7,11,15-trioxo-25,26,27-trisnorlanost8 -en- 24 -oic acid). ${ }^{4}$ The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR signals for the sidechain moiety of 5 (Table 2) were, on the other hand, almost indistinguishable from those of $\mathbf{3}$. The above evidence coupled with analyses of the UV, IR, and EIMS spectra,
as well as the ${ }^{13} \mathrm{C}$ DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and NOESY spectra, indicated that 5 was (20ξ)-12 β -acetoxy- $3 \beta, 20$-dihydroxy-7,11,15-trioxo-25,26,27-trisnorl-anost-8-en-24-oic acid (20-hydroxylucidenic acid E_{2}).

Compound 6 was assigned the molecular formula $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{7}$ (HREIMS m/z $458.2668\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$; FABMS $m / z 499[\mathrm{M}+\mathrm{Na}]^{+}$). The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR signals (Table 2) of the ring system were very similar to those of lucidenic acid N ($3 \beta, 7 \beta$-dihydroxy-11,15-dioxo-25,26,27-trisnorlanost8 -en-24-oic acid), ${ }^{3}$ while the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR signals for the side-chain moiety were superimposable with those of 3. This information suggested that 6 is a C-20-hydroxylated analogue of lucidenic acid N , viz., (20ξ)-3 $\beta, 7 \beta, 20$-trihydroxy-11,15-dioxo-25,26,27-trisnorlanost-8-en-24-oic acid (20-hydroxylucidenic acid N). Analyses of the UV, IR, and EIMS spectra and the ${ }^{13} \mathrm{C}$ DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and NOESY spectra of $\mathbf{6}$ supported its proposed structure.

Compound 7 had the molecular formula $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{9}$ (HREIMS $m / z 516.2723\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$; FABMS $\left.m / z 557[\mathrm{M}+\mathrm{Na}]^{+}\right)$ and showed ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR signals (Table 2) arising from the ring-system moiety that were very similar to those of lucidenic acid P (12β-acetoxy- $3 \beta, 7 \beta$-dihydroxy- 11,15 -dioxo-$25,26,27$-trisnorlanost-8-en-24-oic acid), ${ }^{4}$ whereas the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR signals of the side-chain moiety were nearly indistinguishable from those of 3 . These findings indicated that 7 was a C-20-hydroxylated analogue of lucidenic acid P and that it has the structure (20ξ) - 12β-acetoxy- $3 \beta, 7 \beta, 20-$ trihydroxy-11,15-dioxo-25,26,27-trisnorlanost-8-en-24-oic acid (20-hydroxylucidenic acid P). Analyses of the UV, IR, and EIMS spectra and the ${ }^{13} \mathrm{C}$ DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC, HMBC, and NOESY spectra of 7 supported this structure.

This is the first report of the isolation of lanostane-type triterpenoids possessing a $\Delta^{20(21)}$-unsaturated side-chain, 1 and 2 , from a natural source, although several $\Delta^{20(21)}$ unsaturated dammarane-type triterpenoids have been reported in some higher plants. ${ }^{9-11}$ In addition, although several C-20-hydroxylated ganoderic acids, highly oxygenated lanostane-type triterpenoids possessing a C_{8}-sidechain, have been reported as constituents of G. lucidum, ${ }^{12-14}$ this is the first instance of the isolation of C-20-hydroxylated lucidenic acids, highly oxygenated lanostane-type triterpenoids with a C_{5}-side-chain, $\mathbf{3 - 7}$, from a natural source. The absolute configuration at C-20 of compounds $3-7$ remained undetermined in this study.

Experimental Section

General Experimental Procedures. Crystallizations were performed in acetone -MeOH , and melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO $\mathrm{P}-1030$ polarimeter in acetone or in CHCl_{3} at $25{ }^{\circ} \mathrm{C}$. UV spectra, on a Shimadzu UV-2200 spectrometer, and IR spectra, on a JASCO FTIR-300E spectrometer, were recorded in MeOH and KBr disks, respectively. NMR spectra were recorded with a JEOL ECX-500 $\left({ }^{(1 \mathrm{H}: ~} 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}\right.$: 125 MHz$)$ or with a JEOL ECA-600 ($\left.{ }^{1} \mathrm{H}: 600 \mathrm{MHz},{ }^{13} \mathrm{C}: 150 \mathrm{MHz}\right)$ spectrometer in CDCl_{3} or in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ with tetramethylsilane as internal standard. Electron-ionization mass spectra (EIMS; 70 eV) and high-resolution EIMS (HREIMS) were recorded on a JEOL JMS-BU20 spectrometer using a direct inlet system. FABMS and HRFABMS were obtained with a JEOL JMS-BU20 spectrometer using glycerol as a matrix. Analytical TLC on silica gel (silica gel F_{254}, Merck; $10 \times 10 \mathrm{~cm}$) was developed using n-hexane-ethyl acetate (EtOAc)-acetic acid (AcOH) (50: 50:0.5, v/v/v). Silica gel (Kieselgel 60, 230-400 mesh, Merck) was used for open column chromatography. Reversed-phase preparative HPLC was carried out on a $25 \mathrm{~cm} \times 10 \mathrm{~mm}$ i.d.
Table 2. ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$, and HMBC NMR Spectral Data for Triterpenoids $4-7\left(\mathrm{CDCl}_{3}\right)$

C no.	4		5		6		7
	$\delta_{\mathrm{C}} \quad \delta_{\mathrm{H}}{ }^{a}$	HMBC(H to C)	$\delta_{\mathrm{C}} \quad \delta_{\mathrm{H}}{ }^{a}$	HMBC(H to C)	$\delta_{\mathrm{C}} \quad \delta_{\mathrm{H}}{ }^{\text {a }}$	HMBC (H to C)	$\delta_{\mathrm{C}} \quad \delta_{\mathrm{H}}{ }^{a}$
1	34.6 t $\alpha: 1.74$ ddd ($5.6,9.8,13.9$)	$2,3,9,10,19$	33.2 t 人: 1.18 m	2, 19	34.8 t α : 0.99 m	2, 3, 10	34.4 t $\alpha: 0.96$ ddd ($4.3,13.2,14.3$)
	$\beta: 2.63 \mathrm{~m}$	$2,3,10,19$	$\beta: 2.73 \mathrm{~m}$	2, 3, 5	$\beta: 2.85$ ddd (3.4, 3.6, 13.7)	2, 3, 10	$\beta: 2.63$ ddd (3.7, 3.7, 13.2)
2	33.8 t $\alpha: 2.52$ ddd ($5.6,7.3,15.1$)	1, 3	27.3 t 1.71 (2H) m	4, 10	27.6 t 1.66 (2H) m	1, 3	27.4 t 1.65 (2H) m
	$\beta: 2.62 \mathrm{~m}$	1, 3					
3	215.1 s		77.4 d 3.26 dd (4.9, 11.2)	28, 29	78.2 d 3.21 dd ($5.6,10.7$)	4, 28, 29	78.1 d 3.20 dd (5.1, 11.2)
4	47.0 s		40.5 s		38.6 s		38.6 s
5	50.9 d 2.32 dd (2.7, 12.2)	4, 7, 10, 19, 28	51.4 d 1.56 dd (2.7, 14.4)	$4,6,10,19,28,29$	49.1 d 0.88 brd (13.7)	4, 7, 19, 29	49.1 d 0.89 brd (14.9)
6	37.2 t 2.48 dd (2.7, 13.7)	5, 7, 8	36.6 t $\alpha: 2.59$ dd ($2.7,13.6$)	5, 7	26.6 t $\alpha: 2.19$ br dd ($8.5,12.2$)	5, 7, 8, 10	26.7 t α : 2.24 brdd (9.2, 13.5)
	2.73 dd (13.7, 14.9)	5,7	$\beta: 2.68$ dd (13.6, 14.4)	5, 7	$\beta: 1.62 \mathrm{~m}$	5, 7, 8, 10	$\beta: 1.65 \mathrm{~m}$
7	199.1 s		198.0 s		66.0 d 4.80 dd ($8.5,8.8$)	6, 8, 9, 30	66.1 d 4.83 dd ($6.0,13.5$)
8	146.2 s		151.4 s		156.5 s		155.9 s
9	149.6 s		145.4 s		142.6 s		142.9 s
10	34.6 s		39.1 s		38.9 s		38.6 s
11	198.0 s		193.0 s		197.0 s		191.0 s
12	$\begin{array}{cc} 48.8 \mathrm{t} & \alpha: \\ & 2.93 \mathrm{~d}(16.19 \\ \beta: & 2.86 \mathrm{~d}(16.4) \end{array}$	$\begin{aligned} & 11,13 \\ & 9,11,13 \end{aligned}$	78.9 d 5.65 s	11, 13, 14, 18, COMe	50.2 t $2.81(2 \mathrm{H}) \mathrm{s}$	$9,11,13,14,17,18$	79.1 d 5.64 s
13	44.3 s		48.2 s		45.4 s		49.8 s
14	57.1 s		58.9 s		59.3 s		61.0 s
15	204.9 s		203.9 s		215.7 s		214.5 s
16	34.3 t α : 2.64 m	15, 17	35.7 t $\alpha: 2.81$ dd $(9.8,18.1)$	$13,14,15,17$	35.7 t α : 2.61 m	13, 15, 17, 20	37.1 t α : $2.81 \mathrm{dd}(8.6,15.5)$
	$\beta: 2.28$ dd (5.9, 14.9)	15, 17, 20	$\beta: 2.28$ dd (8.5, 18.1)	$13,14,15,17,20$	$\beta: 2.49 \mathrm{~m}$	13, 15, 17, 20	$\beta: 2.52$ dd (9.7, 16.9)
17	48.1 d 2.65 m	13, 15	49.2 d 2.93 dd (8.5, 9.8)	12, 13, 16, 18, 20, 21	49.5 d 2.52 m	13, 15, 16, 18, 20	50.2 d 2.84 dd ($8.9,8.9$)
18	17.4 q 1.02 s	12, 13, 14	13.2 q 0.93 s	12, 13, 14	18.8 q 1.13 s	12, 13	14.2 q 1.08 s
19	18.6 q 1.28 s	1, 5, 9, 10	17.9 q 1.33 s	$1,4,5,8$	18.3 q 1.22 s	1, 5, 9, 10	18.5 q 1.26 s
20	86.0 s		86.6 s		85.9 s		86.7 s
21	26.3 q 1.50 s	17, 20, 22	26.1 q 1.48 s	17, 20	25.9 q 1.51 s	17, 20, 22	25.2 q 1.49 s
22	34.2 t $2.02(1 \mathrm{H})$,	20, 24	34.5 t 2.05 (2H) m	17, 20, 21, 23, 24	34.2 t 2.06 (2H) m	20, 21, 23, 24	34.6 t 2.08 (2H) m
	2.07 (1H) m	20, 23					
23	$27.3 \mathrm{t} 2.61(1 \mathrm{H}) \mathrm{m}$	22, 24	28.1 t $2.52(1 \mathrm{H}) \mathrm{m}$	22, 24	27.5 t $2.54(1 \mathrm{H}) \mathrm{m}$	20, 22, 24	28.3 t $2.54(1 \mathrm{H}) \mathrm{m}$
	2.67 (1H) m	22, 24	2.68 (1H) m	22, 24	2.64 (1H) m	20, 22, 24	2.70 (1H) m
24	175.8 s		175.6 s		175.9 s		175.5 s
28	27.6 q 1.14 s	2, 4, 5, 29	27.9 q 1.03 s	3, 5, 10, 29	28.1 q 1.04 s	3, 4, 5, 29	28.1 q 1.04 s
29	20.3 q 1.12 s	3, 4, 28	15.5 q 0.89 s	$3,5,10,28$	15.4 q 0.85 s	3, 4, 5, 28	15.4 q 0.86 s
30	21.3 q 1.68 s	8, 13, 14, 15	21.6 q 1.78 s	9, 13, 14, 15	24.7 q 1.38 s	8, 13, 15, 18	24.5 q 1.54 s
COMe			170.1 s				170.3 s
COMe			21.0 q 2.26 s	COMe			21.2 q 2.26 s

[^2]C_{18} silica column (Pegasil ODS II column; Senshu Scientific Co., Ltd., Tokyo, Japan) at $25{ }^{\circ} \mathrm{C}$ eluting with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-$ $\mathrm{AcOH}(60: 40: 1, \mathrm{v} / \mathrm{v} / \mathrm{v})$ as mobile phase at $2 \mathrm{~mL} / \mathrm{min}$. A refractive index detector was used for reversed-phase HPLC.

Materials. Fruiting bodies of Ganoderma lucidum Karst (Polyporaceae) used in this study were described previously. ${ }^{4}$

Extraction and Isolation. Column chromatography on silica gel (1 kg) of the MeOH extract (30 g) of dried and chipped fruiting bodies of G. lucidum (373 g) which was eluted successively with n-hexanes-EtOAc [1:0 (2.5 L), 19:1 (6.5 L), 9:1 (2.5 L), 4:1 (3.0 L), 7:3 (10.0 L), 3:7 (9.0 L), 0:1 (7:0 L), v/v] gave six fractions. ${ }^{4}$ A portion $(5.0 \mathrm{~g})$ of the most polar fraction $(6.9 \mathrm{~g})$ eluted by n-hexanes-EtOAc [7:3, 3:7, and $0: 1$] was further chromatographed on silica gel (200 g) with a stepwise gradient of n-hexanes-EtOAc [9:1 (4.5 L), 4:1 (5.8 L), 7:3 (3.0 L), $1: 1(3.4 \mathrm{~L}), 2: 3(0.6 \mathrm{~L}), 3: 7(5.2 \mathrm{~L}), 1: 4(0.8 \mathrm{~L}), 0: 1(1.0 \mathrm{~L})$, v / v], which yielded fractions A ($R_{f} \mathrm{ca} .0 .7$ on TLC; 707 mg), B (R_{f} ca. $0.5 ; 916 \mathrm{mg}$), and C ($R_{f} \mathrm{ca} .0 .2 ; 1.83 \mathrm{~g}$) from the eluates of n-hexanes-EtOAc (7:3), ($1: 1$ and $2: 3$), and ($3: 7,1: 4$, and $0: 1$), respectively. ${ }^{4}$ A portion (173 mg) of fraction B, separated by HPLC, afforded compound $2\left(2.8 \mathrm{mg} ; t_{\mathrm{R}} 27.6 \mathrm{~min}\right)$. HPLC of a portion (800 mg) of fraction C gave six compounds, $\mathbf{1}(2.0 \mathrm{mg}$; $\left.t_{\mathrm{R}} 19.0 \mathrm{~min}\right), \mathbf{3}\left(2.0 \mathrm{mg} ; t_{\mathrm{R}} 13.0 \mathrm{~min}\right), 4\left(4.0 \mathrm{mg} ; t_{\mathrm{R}} 8.4 \mathrm{~min}\right), \boldsymbol{5}$ $\left(2.6 \mathrm{mg} ; t_{\mathrm{R}} 15.0 \mathrm{~min}\right), \mathbf{6}\left(14.2 \mathrm{mg} ; t_{\mathrm{R}} 6.6 \mathrm{~min}\right)$, and $7\left(2.6 \mathrm{mg} ; t_{\mathrm{R}}\right.$ 7.6 min).

20(21)-Dehydrolucidenic acid A (1): colorless needles, $\mathrm{mp} 135-137{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+69.9^{\circ}\left(c \quad 0.20, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}$ $253 \mathrm{~nm}(\log \epsilon 3.78)$; IR $v_{\text {max }} 3445,1735,1702,1659,897 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; EIMS m/z 456 [M] ${ }^{+}$(90), 438 [$\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(75), 428[\mathrm{M}-\mathrm{CO}]^{+}$(100), 397 (loss of C-23-C24 by the cleavage of C-22-C-23 bond) (7), 395 ($\mathrm{m} / \mathrm{z} 397-2 \mathrm{H}$) (7), 369 (25), $355\left[\mathrm{M}-\text { side-chain }\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)-2 \mathrm{H}\right]^{+}(13), 331$ (13), 318 (loss of ring A by the cleavage of C-5-C-6 and C-9-C-10 bonds) (85), 312 (98), 300 (loss of ring D plus 2 H by the cleavage of C-13-C-17 and C-14-C-15 bonds) (20), 275 (55), 261 (25); HREIMS m/z 456.2512 (calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{6}[\mathrm{M}]^{+}$, 456.2511).

Methyl 20(21)-dehydrolucidenate \mathbf{A} (2): colorless needles, $\mathrm{mp} 123-125{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+151.2^{\circ}\left(c \quad 0.26, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\text {max }} 254 \mathrm{~nm}(\log \epsilon 3.88)$; IR $\nu_{\text {max }} 3458,2928,1733,1706,1660$, $899 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; EIMS $\mathrm{m} / \mathrm{z} 470[\mathrm{M}]^{+}$ (91), $455[\mathrm{M}-\mathrm{Me}]^{+}$(19), $452\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(11), $442[\mathrm{M}-\mathrm{CO}]^{+}$ (100), 397 (loss of C-23-C-24 by the cleavage of C-22-C-23 bond) (5), 369 (29), $355\left[\mathrm{M}-\text { side-chain }\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)-2 \mathrm{H}\right]^{+}(19)$, 345 (13), 332 (loss of ring A by the cleavage of C-5-C-6 and C9-C10) (87), 304 (29), 300 (loss of ring D plus 2 H by the cleavage of C-13-C-17 and C14-C15 bonds) (87), 285 (20), 275 (35), 261 (19); HREIMS $m / z 470.2668$ (calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{6}[\mathrm{M}]^{+}$, 470.2671).

20-Hydroxylucidenic acid \mathbf{D}_{2} (3): colorless needles, mp $123-125{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+54.7^{\circ}\left(c 0.10, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max } 254$ $\mathrm{nm}(\log \epsilon 3.97)$; IR $v_{\max } 3452,1752,1698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1; EIMS m/z 512 [M - $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}$(30), 470 [M $\mathrm{HOAc}]^{+}$(100), 452 [$\left.\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}\right]^{+}(10), 437[\mathrm{M}-\mathrm{Me}-$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{HOAc}\right]^{+}$(3), 427 (6), $413\left[\mathrm{M}-\text { side-chain }\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{3}\right)\right]^{+}$ (5), 397 (4), 371 ($\mathrm{m} / \mathrm{z} 413-\mathrm{Me}-\mathrm{CO}+\mathrm{H}$) (15), 354 ($\mathrm{m} / \mathrm{z} 413$ $-\mathrm{HOAc}+\mathrm{H}$) (18), $302\left[\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{5}\right.$ (species formed by the cleavage of $\mathrm{C}-11-\mathrm{C}-12, \mathrm{C}-13-\mathrm{C}-14$, and $\mathrm{C}-16-\mathrm{C} 17$ bonds) + $\mathrm{H}]^{+}(60), 169\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{5}-\mathrm{HOAc}^{+}(60)\right.$; HREIMS $\mathrm{m} / z 512.2410$ (calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{8}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 512.2411$); FABMS m/z 553 $[\mathrm{M}+\mathrm{Na}]^{+}$.

20-Hydroxylucidenic acid \mathbf{F} (4): colorless needles, mp $162-164{ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}+128.6^{\circ}$ (c 0.10, acetone); UV (MeOH) $\lambda_{\text {max }}$ $255 \mathrm{~nm}(\log \epsilon 3.99)$; IR $\nu_{\text {max }} 3449,1772,1750,1698,1680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 2; MS $\mathrm{m} / \mathrm{z} 454\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(100), $439\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}\right]^{+}(7), 426[\mathrm{M}-\mathrm{COOH}-\mathrm{H}]^{+}(7), 411$ (8), 399 (5), 383 (5), $355\left[\mathrm{M} \text { - side-chain }\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{3}\right)\right]^{+}(7), 327(\mathrm{~m} / \mathrm{z}$ $355-\mathrm{CO})(30), 306$ (25) [loss of ring A $\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}\right)$ plus CO by the cleavage of C-5-C-6 and C-9-C-10 bonds], 300 (loss of ring

D by the cleavage of C-13-C-17 and C-14-C-15 bonds) (24), $285(\mathrm{~m} / \mathrm{z} 300-\mathrm{Me})$ (7). HREIMS $\mathrm{m} / \mathrm{z} 454.2355$ (calcd for $\left.\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{6}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 454.2355\right)$; FABMS $\mathrm{m} / \mathrm{z} 495[\mathrm{M}+\mathrm{Na}]^{+}$.
$\mathbf{2 0 - H y d r o x y l u c i d e n i c}$ acid \mathbf{E}_{2} (5): colorless needles, mp $147-149{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+78.0^{\circ}$ (c 0.16, acetone); UV (MeOH) $\lambda_{\text {max }}$ $255 \mathrm{~nm}(\log \epsilon 3.85)$; IR $v_{\max } 3466,1753,1697 \mathrm{~cm}^{-1}$; EIMS m / z $514\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(10), 472 [$\left.\mathrm{M}-\mathrm{HOAc}\right]^{+}$(22), 454 [$\mathrm{M}-\mathrm{HOAc}$ $\left.-\mathrm{H}_{2} \mathrm{O}\right]^{+}(10), 439(\mathrm{~m} / \mathrm{z} 454-\mathrm{Me})(3), 415[\mathrm{M}-$ side-chain $\left.\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{3}\right)\right]^{+}(4), 373(\mathrm{~m} / \mathrm{z} 415-\mathrm{Me}-\mathrm{CO}+\mathrm{H})(22), 356(\mathrm{~m} / \mathrm{z}$ $415-\mathrm{HOAc}+\mathrm{H})(13), 304\left[\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{5}\right.$ (species formed by the cleavage of $\mathrm{C}-11-\mathrm{C}-12, \mathrm{C}-13-\mathrm{C}-14$, and $\mathrm{C}-16-\mathrm{C} 17$ bonds) $+\mathrm{H}]^{+}(100), 169\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{5}-\mathrm{HOAc}\right]^{+}$(38). HREIMS m / z 514.2566 (calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{8}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, 514.2571); FABMS $\mathrm{m} / \mathrm{z} 555[\mathrm{M}+\mathrm{Na}]^{+}$.

20-Hydroxylucidenic acid \mathbf{N} (6): colorless needles, mp $268-270{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+150.4^{\circ}\left(c 0.23\right.$, acetone); UV (MeOH) $\lambda_{\text {max }}$ $255 \mathrm{~nm}(\log \epsilon 3.85)$; IR $v_{\text {max }} 3434,1771,1721,1661 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 2; MS m/z $458\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(48), 440 $\left[\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}(10), 430[\mathrm{M}-\mathrm{COOH}-\mathrm{H}]^{+}(100), 407$ (4), 371 (9), $357\left[\mathrm{M} \text { - side-chain }\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{3}\right)-2 \mathrm{H}\right]^{+}(4), 331(\mathrm{~m} / \mathrm{z} 357-$ $\mathrm{CO})(13), 318$ [loss of ring A $\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}\right)$ by the cleavage of C-5-C-6 and C-9-C-10 bonds] (45), 304 (loss of ring D by the cleavage of $\mathrm{C}-13-\mathrm{C}-17$ and $\mathrm{C}-14-\mathrm{C}-15$ bonds) (10); HREIMS $\mathrm{m} / \mathrm{z} 458.2668$ (calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{6}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, 458.2667); FABMS $m / z 499[\mathrm{M}+\mathrm{Na}]^{+}$.

20-Hydroxylucidenic acid P (7): colorless needles, mp $125-127{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}+77.7^{\circ}\left(c \quad 0.10, \mathrm{CHCl}_{3}\right) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}$ $254 \mathrm{~nm}(\log \epsilon 3.87)$; IR $\nu_{\max } 3451,1758,1695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 2; MS m/z $516\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(7), 501\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right.$ $-\mathrm{Me}]^{+}(2), 488[\mathrm{M}-\mathrm{COOH}-\mathrm{H}]^{+}(10), 474[\mathrm{M}-\mathrm{HOAc}]^{+}(4)$, $456\left[\mathrm{M}-\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(4), 441(\mathrm{~m} / \mathrm{z} 454-\mathrm{Me})(2), 417[\mathrm{M}$ - side-chain $\left.\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{3}\right)\right]^{+}(1), 375(\mathrm{~m} / \mathrm{z} 417-\mathrm{Me}-\mathrm{CO}+\mathrm{H})$ (10), $356(\mathrm{~m} / \mathrm{z} 415-\mathrm{HOAc}+\mathrm{H})(13), 306\left[\mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{5}\right.$ (species formed by the cleavage of $\mathrm{C}-11-\mathrm{C}-12, \mathrm{C}-13-\mathrm{C}-14$, and $\mathrm{C}-16-\mathrm{C} 17$ bonds) +H$]^{+}(100), 169\left[\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{5}-\mathrm{HOAc}\right]^{+}(10)$; HREIMS m/z 516.2723 (calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{8}\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, 516.2722); FABMS m/z $557[\mathrm{M}+\mathrm{Na}]^{+}$.

Acknowledgment. The authors are indebted to Dr. K. Koike (College of Pharmaceutical Sciences, Toho University, Chiba, Japan) for the optical rotation measurements.

References and Notes

(1) Namba, T. The Encyclopedia of Wakan-Yaku (Traditional SinoJapanese Medicines) with Color Pictures, revised ed.; Hoikusya: Osaka, 1994; Vol. II, pp 244-250.
(2) Min, B.-S.; Nakamura, N.; Miyashiro H.; Bae, K.-W.; Hattori, M. Chem. Pharm. Bull. 1998, 46, 1607-1612, and references therein.
(3) Wu, T. S.; Shi, L. S.; Kuo, S. C. J. Nat. Prod. 2001, 64, 1121-1122.
(4) Iwatsuki, K.; Akihisa, T.; Tokuda, H.; Ukiya, M.; Oshikubo, M.; Kimura, Y.; Asano, T.; Nomura, A.; Nishino, H. J. Nat. Prod. 2003, 66, 1582-1585.
(5) Akihisa, T.; Yasukawa, K. In Studies in Natural Products Chemistry, Vol. 25. Bioactive Natural Products (Part F); Atta-ur-Rahman, Ed.; Elsevier Science B.V.: Amsterdam, 2001; pp 43-87.
(6) Akihisa, T.; Yasukawa, K.; Tokuda, H. In Studies in Natural Products Chemistry, Vol. 29. Bioactive Natural Products (Part J); Atta-urRahman, Ed.; Elsevier Science B.V.: Amsterdam, 2003; pp 73-126.
(7) Nishitoba, T.; Sato, J.; Kasai, T.; Kawagishi, H.; Sakamura, S. Agric. Biol. Chem. 1985, 49, 1793-1798.
(8) Wu, T. S.; Shi, L. S.; Kuo, S. C.; Cherng, C. Y.; Tung, S. F.; Teng, C. M. J. Chin. Chem. Soc. 1997, 44, 157-161.
(9) Yano, K.; Akihisa, T.; Kawaguchi, R.; Tamura, T.; Matsumoto, T. Phytochemistry 1992, 31, 1741-1746.
(10) Akihisa, T.; Yasukawa, K.; Kimura, Y.; Takase, S.; Yamanouchi, S.; Tamura, T. Chem. Pharm. Bull. 1997, 45, 2016-2023.
(11) Leong, Y.-W.; Harrison, L. J. Phytochemistry 1999, 50, 849-857.
(12) Kikuchi, T.; Kanomi, S.; Kadota, S.; Murai, Y.; Tsubono, K.; Ogita, Z. Chem. Pharm. Bull. 1986, 34, 3695-3712.
(13) Nishitoba, T.; Sato, H.; Sakamura, S. Phytochemistry 1987, 26, 17771784.
(14) Ma, J.; Ye, Q.; Hua, Y.; Zhang, D.; Cooper, R.; Chang M. N.; Chang, J. Y.; Sun, H. H. J. Nat. Prod. 2002, 65, 72-75.

NP040230H

[^0]: * To whom correspondences should be addressed. Tel: +81-3-3259-0806.

 Fax: +81-3-3293-7572. E-mail: akihisa@chem.cst.nihon-u.ac.jp.
 ${ }^{\dagger}$ College of Science and Technology, Nihon University.

 * Kyoto Prefectural University of Medicine.
 § College of Pharmacy, Nihon University.

[^1]: ${ }^{a}$ Determined in $\mathrm{CDCl}_{3 .}{ }^{b}$ Figures in parentheses denote J values (hertz).

[^2]: ${ }^{a}$ Figures in parentheses denote J values (hertz)

