Oxygenated Lanostane-Type Triterpenoids from the Fungus Ganoderma lucidum

Toshihiro Akihisa,^{*,†} Masaaki Tagata,[†] Motohiko Ukiya,[†] Harukuni Tokuda,[‡] Takashi Suzuki,[§] and Yumiko Kimura[§]

College of Science and Technology, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan, Department of Biochemistry, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-0841, Japan, and College of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba 274-8555, Japan

Received December 15, 2004

Two new triterpenoids, 20(21)-dehydrolucidenic acid A (1) and methyl 20(21)-dehydrolucidenate A (2), and five new 20-hydroxylucidenic acids, 20-hydroxylucidenic acid D_2 (3), 20-hydroxylucidenic acid F (4), 20-hydroxylucidenic acid E_2 (5), 20-hydroxylucidenic acid N (6), and 20-hydroxylucidenic acid P (7), were isolated from the fruiting body of the fungus *Ganoderma ludicum*, and their structures were established on the basis of spectroscopic methods.

The fruiting body of Ganoderma lucidum Karst (Polyporaceae), commonly known as the Reishi mushroom, is widely used in China, Japan, and Korea as a valuable crude drug, especially in the treatment of chronic hepatitis, nephritis, hepatopathy, neurasthenia, arthritis, bronchitis, asthma, gastric ulcer, and insomnia.¹ Over one hundred oxygenated triterpenoids have been isolated from this mushroom.²⁻⁴ In the course of our search for potential antitumor-promoters (chemopreventive agents) from natural sources,^{5,6} we have isolated and characterized three new and 14 known oxygenated lanostane-type triterpenoids from the fruiting body of the fungus G. lucidum and have reported their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA).⁴ Our continuing study on the constituents of G. lucidum fruiting body led to the isolation of seven further new triterpenoids (1-7), and we report their structure elucidation in this paper.

Results and Discussion

The molecular formula of 1 was determined as C₂₇H₃₆O₆ from its HREIMS ($[M]^+ m/z$ 456.2512) as well as from its ¹³C NMR DEPT. The UV absorbance at 253 nm indicated the presence of an α,β -unsaturated ketone system. Its IR absorption bands suggested the presence of hydroxyl (3445 cm^{-1}), carbonyl (1735 cm^{-1}), carboxyl (1659 cm^{-1}), and terminal methylene (897 cm^{-1}) groups. The ¹H NMR spectrum showed signals for five tertiary methyl [$\delta_{\rm H}$ 0.90, 1.11, 1.13, 1.26, and 1.39 (each s)], a terminal methylene $[\delta_{\rm H} 4.91 \text{ and } 5.08 \text{ (each 1H and s)}]$, and an oxymethine $[\delta_{\rm H}$ 4.87 (dd, J = 7.6, 9.6 Hz)] groups (Table 1). The ¹³C NMR, combined with DEPT and HMQC, showed that 1 had five methyls, eight methylenes (including one sp² methylene carbon), three methines (including one oxymethine carbon), seven quaternary carbons (including three sp² carbons), and four carbonyls (including three ketones) (Table 1). The EIMS of 1 showed diagnostic fragment ions at m/z 355 $[C_{22}H_{27}O_4]^+$, corresponding to the loss of a side-chain $(C_5H_7O_2)$ with concomitant 2H loss, 318 $[C_9H_{14}O_1]^+$, formed by the loss of ring A by the cleavage of C-5-C-6 and C-9-

C-10, and 300 $[C_8H_{12}O_3]^+$, due to the loss of ring D plus 2H by the cleavage of C-13–C-17 and C-14–C-15. Comparison of these data with those of lucidenic acid A (7 β -hydroxy-3,11,15-trioxo-25,26,27-trinorlanost-8-en-24-oic acid)^{4,7,8} suggested that compound **1** possesses the same structure as that of lucidenic acid A with the exception of the side-chain. Compound **1** had an additional double bond in the side-chain as a terminal methylene group most probably located at C-20(21). The structure of compound **1** was, therefore, assigned as 7 β -hydroxy-3,11,15-trioxo-25,26,27-trisorlanosta-8,20(21)-dien-24-oic acid, which we

10.1021/np040230h CCC: \$30.25 © 2005 American Chemical Society and American Society of Pharmacognosy Published on Web 04/06/2005

^{*} To whom correspondences should be addressed. Tel: +81-3-3259-0806.

Fax: +81-3-3293-7572. E-mail: akihisa@chem.cst.nihon-u.ac.jp.

[†] College of Science and Technology, Nihon University. [‡] Kyoto Prefectural University of Medicine.

[§] College of Pharmacy, Nihon University

Table 1. 13	3, ¹ H, i	I pur	HMBC NMR Spectral Data for	Triterpenoids 1–3 (CDC	$l_3)$					
			1				2ª		က	
C no.	$\delta_{\rm C}$		$\delta_{\mathrm{H}}{}^{b}$	HMBC (H to C)	$\delta_{\rm C}$		$\delta_{\mathrm{H}}{}^{b}$	$\delta_{\rm C}$	$\delta_{\mathrm{H}}{}^{b}$	HMBC(H to C)
1	35.7	4	α: 1.48 ddd (8.2, 8.6, 13.8) β: 2.95 ddd (5.2, 7.6, 13.8)	2, 3, 9, 10, 19 2, 3, 5, 10, 19	36.0	t	α: 1.63 ddd (8.2, 8.2, 13.7) β: 3.18 ddd (6.5, 6.5, 13.7)	34.0 t	α : 1.73 ddd (6.9, 9.7, 14.3) β : 2.76 ddd (6.3, 8.3, 14.3)	$2, 10, 19 \\ 2, 5, 10, 19$
2	34.3	t	α : 2.45 ddd (5.2, 8.2, 16.5) β : 2.53 ddd (7.6, 8.6, 16.5)	1, 3, 10 1, 3, 10	34.5	 ц	2.57 (2H) dd like (8.3, 8.3)	33.6 t	α : 2.48 ddd (6.9, 8.3, 15.4) β : 2.60 ddd (6.3, 9.7, 15.4)	1, 3, 4, 10 1, 3, 10
ŝ	216.5	ß	~	~	215.9	ß		214.9 s		~
4 v:	46.8 49.0	ഹപ	1.58 dd (1.7. 13.7)	4, 7, 10, 19, 28, 29	46.8 48.9	סי גט	1.76 dd (1.7. 13.7)	46.9 s 50.9 d	2.31 dd (2.3. 14.9)	1.4.6.10.28.29
9	27.7	4	α: 2.12 ddd (1.7, 7.6, 13.1) β. 1 68 ddd (9 6 13 1 13.7)	7, 8, 10 5, 7	29.1	۔ ب ب	x: 2.22 ddd (1.7, 8.0, 13.1) 8: 1 87 ddd (0 3 13 1 13 7)	37.4 t	a: 2.50 dd (2.3, 13.8) B: 9.74 dd (13.8, 14.9)	
7	66.3	q	p. 1.00 uut (5.0, 10.1, 10.1) 4.87 dd (7.6, 9.6)	6, 9	65.7	יי _ ק	5.19 dd (8.0, 9.3)	198.4 s	p. 2.17 uu (10.0, 17.0)	0, 1, TU
00	157.8	Ø			159.8	ß		145.6 s		
6	141.3	so			140.9	ß		149.6 s		
10	38.3	ß			38.5	ß		39.3 s		
11	197.5	ß			198.0	ß		193.3 s		
12	49.1	t,	$lpha: 2.83 d (16.8) \ eta: 2.65 d (16.8)$	$11, 13, 18\\11, 14, 18$	49.8	- -	α: 3.06 d (16.8) 3: 2.80 d (16.8)	78.6 d	5.70 s	11, 13, 14, COMe
13	45.3	Ø			45.5	- 02		47.9 s		
14	58.8	a vo			58.3	2 02		58.9 s		
15	217.7	ß			215.5	ß		203.8 s		
16	38.7	÷	2.61 (2H) d like (9.0)	15	39.5	ц.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35.4 t	$\alpha: 2.84 \text{ dd} (10.0, 18.3)$	13, 15 14 15 17 90
17	46.3		3 01 44 (9 0 9 0)	13 16 17 18 20 24	46.7	- ··	9: 2.00 uu (11.0, 10.9) 3 19 dd (7 6 11 0)	48.8	p: 2.21 uu (o.o, 10.0) 2.95 dd (8.3-10.0)	14, 10, 17, 20 13 16 18 20
18	18.8	50	0.90 s	12. 14. 17	19.3	50	1.10 s	13.0 0	0.96 s	13, 14
19	18.2	r 0	1.26 s	1, 5, 9, 10	18.6	ਾ ਰਾ	1.35 s	18.7 q	1.34 s	1, 5, 9, 10
20	143.9	Ø			145.8	ŝ		86.4 s		
21	112.3	t,	4.91 s, 5.08 s	17, 22	111.6	ţ	4.93 s, 5.05 s	26.1 9	1.49 s	17
22	31.3	÷	2.31 (1H) ddd (7.9, 7.9, 16.2) 2.48 (1H) ddd (5.2, 7.9, 13.4)	20, 21, 22, 23, 24 20, 21, 22, 23, 24	31.8		2.36 (1H) ddd (7.2, 15.5, 16.2) 2.48 (1H) ddd (7.6, 15.8, 16.2)	34.5 t	2.04 (1H) ddd (3.4, 10.3, 13.0) 2.10 (1H) ddd (2.7, 10.0, 13.0)	21, 23, 24 17, 21, 23
23	31.9	t	2.59 (2H) dd like (7.6, 7.6)	20, 24	32.6	ц т	2.61 (2H) d like (7.2)	28.0 t	2.56 (1H) m 2.69 (1H) m	22, 24 22, 24
24	175.1	ø			173.2	ŝ		175.6 s		
28	27.0	Ъ	$1.13 \mathrm{~s}$	5, 29	27.0	ъ	$1.15 \mathrm{s}$	27.6 q	1.14 s	3, 4, 5, 29
29	20.8	Ъ	$1.11 \mathrm{s}$	3, 4, 28	20.9	ъ	1.12 s	20.4 g	$1.12 \mathrm{s}$	3, 4, 5, 28
30	24.6	Ч	$1.39 \mathrm{s}$	8, 13, 14, 15	25.2	Ъ	$1.43 \mathrm{~s}$	21.1 9	1.85 s	8, 13, 14, 15
COMe								170.1 s		
COMe					1		2	21.0 9	2.26 s	COMe
COUME					01.0	ď	3.64 s			
^a Determi	ned in	CDC	Jl ₃ . ^b Figures in parentheses de	note J values (hertz).						

named 20(21)-dehydrolucidenic acid A. Analysis of $^1\rm H-^1\rm H$ COSY, HMQC, HMBC, and NOESY spectra supported the proposed structure of 1.

Compound **2**, $C_{28}H_{38}O_6$ (HREIMS m/z 470.2668 [M]⁺), having 14 mass units (CH₂) higher than compound **1**, showed ¹³C and ¹H NMR signal patterns very similar to those of **1** except for the presence of an additional methoxyl signal [δ_C 51.5 (q); δ_H 3.64 (3H, s)] for **2** (Table 1). The methoxyl group was unambiguously assigned at C-24 as a methyl ester group due to the presence of a significant cross-peak (³J_{C-H}) between signals of δ_H 3.64 and δ_C 173.2 (C-24) in the HMBC spectrum. Hence, compound **2** was characterized as methyl 7 β -hydroxy-3,11,15-trioxo-25,26,27trisnorlanosta-8,20(21)-dien-24-oate [methyl 20(21)-dehydrolucidenate A]. Analysis of the UV, IR, and EIMS spectra (see Experimental Section) and the ¹³C DEPT, ¹H-¹H COSY, HMQC, HMBC, and NOESY spectra of **2** supported the proposed structure.

Compound 3 was assigned the molecular formula C₂₉H₃₈O₉, as determined from its ¹³C DEPT NMR, HRE-IMS $(m/z \ 512.2410 \ [M - H_2O]^+)$, and FABMS $(m/z \ 553 \ [M$ + Na]⁺) data. The UV absorbance at 254 nm indicated the presence of an α,β -unsaturated ketone system. Its IR absorption bands suggested the presence of hydroxyl (3452 cm⁻¹), carbonyl (1752 cm⁻¹), and carboxyl (1698 cm⁻¹) groups. The ¹³C and ¹H NMR data showed that compound 3 had six tertiary methyls, four ketones, a secondary acetoxyl, a tertiary hydroxyl, and a carboxyl group (Table 1). The ¹H NMR spectrum of $\mathbf{3}$ was very similar to that of lucidenic acid D_2 (12 β -acetoxy-3,7,11,15-tetraoxo-25,26,27trisnorlanost-8-en-24-oic acid).⁴ The only exceptions were that **3** exhibited the C-21 methyl signal as a singlet ($\delta_{\rm H}$ 1.49), instead of a doublet observed for lucidenic acid D_2 , and the C-18 methyl singlet at somewhat lower field ($\delta_{\rm H}$ (0.96) than lucidenic acid D_2 , which suggested that 3 had the tertiary hydroxyl group at C-20. The presence of an EIMS fragment ion at m/z 413 [M - side-chain (C₅H₉O₃)]⁺ was consistent with this supposition. The above evidence coupled with analyses of the ¹³C DEPT, ¹H-¹H COSY, HMQC, HMBC, and NOESY spectra allowed the assignment of **3** as (20ξ) -12 β -acetoxy-20-hydroxy-3,7,11,15-tetraoxo-25,26,27-trisnorlanost-8-en-24-oic acid (20-hydroxylucidenic acid D_2).

Compound 4 was assigned the molecular formula $C_{27}H_{36}O_7$ (HREIMS m/z 454.2355 [M - H₂O]⁺; FABMS m/z 495 [M + Na]⁺), corresponding to one acetoxyl group (58 mass units: CH₃OCO - H) less than that of **3**. In the ¹H NMR spectrum of **4** (Table 2), signals due to the ring system were in good agreement with those of lucidenic acid F (3,7,11,15-tetraoxo-25,26,27-trisnorlanost-8-en-24-oic acid),⁴ while the ¹³C and ¹H NMR signals arising from the side-chain moiety were superimposable with those of **3**. This suggested that **4** was a C-20-hydroxylated analogue of lucidenic acid F, viz., (20ξ) -20-hydroxy-3,7,11,15-tetraoxo-25,26,27-trisnorlanost-8-en-24-oic acid (20-hydroxylucidenic acid F). Analysis of the UV, IR, and EIMS spectra and the ¹³C DEPT, ¹H-⁻¹H COSY, HMQC, HMBC, and NOESY spectra of **4** supported this conclusion.

Compound **5** had the molecular formula $C_{29}H_{40}O_9$ (HRE-IMS m/z 514.2566 [M - H₂O]⁺; FABMS m/z 555 [M + Na]⁺) and exhibited ¹H NMR signals (Table 2) for the ring-system moiety very similar to those of lucidenic acid E_2 (12 β -acetoxy-3 β -hydroxy-7,11,15-trioxo-25,26,27-trisnorlanost-8-en-24-oic acid).⁴ The ¹³C and ¹H NMR signals for the side-chain moiety of **5** (Table 2) were, on the other hand, almost indistinguishable from those of **3**. The above evidence coupled with analyses of the UV, IR, and EIMS spectra,

as well as the ¹³C DEPT, ¹H–¹H COSY, HMQC, HMBC, and NOESY spectra, indicated that **5** was (20ξ) -12 β -acetoxy-3 β ,20-dihydroxy-7,11,15-trioxo-25,26,27-trisnorl-anost-8-en-24-oic acid (20-hydroxylucidenic acid E₂).

Compound **6** was assigned the molecular formula $C_{27}H_{40}O_7$ (HREIMS m/z 458.2668 [M - H₂O]⁺; FABMS m/z 499 [M + Na]⁺). The ¹³C and ¹H NMR signals (Table 2) of the ring system were very similar to those of lucidenic acid N (3β , 7β -dihydroxy-11,15-dioxo-25,26,27-trisnorlanost-8-en-24-oic acid),³ while the ¹³C and ¹H NMR signals for the side-chain moiety were superimposable with those of **3**. This information suggested that **6** is a C-20-hydroxylated analogue of lucidenic acid N, viz., (20ξ)- 3β , 7β ,20-trihydroxy-11,15-dioxo-25,26,27-trisnorlanost-8-en-24-oic acid (20-hydroxylucidenic acid N). Analyses of the UV, IR, and EIMS spectra and the ¹³C DEPT, ¹H-⁻¹H COSY, HMQC, HMBC, and NOESY spectra of **6** supported its proposed structure.

Compound 7 had the molecular formula $C_{29}H_{42}O_9$ (HRE-IMS m/z 516.2723 [M – H₂O]⁺; FABMS m/z 557 [M + Na]⁺) and showed ¹³C and ¹H NMR signals (Table 2) arising from the ring-system moiety that were very similar to those of lucidenic acid P (12 β -acetoxy-3 β ,7 β -dihydroxy-11,15-dioxo-25,26,27-trisnorlanost-8-en-24-oic acid),⁴ whereas the ¹³C and ¹H NMR signals of the side-chain moiety were nearly indistinguishable from those of **3**. These findings indicated that **7** was a C-20-hydroxylated analogue of lucidenic acid P and that it has the structure (20 ξ)-12 β -acetoxy-3 β ,7 β ,20-trihydroxy-11,15-dioxo-25,26,27-trisnorlanost-8-en-24-oic acid (20-hydroxylucidenic acid P). Analyses of the UV, IR, and EIMS spectra and the ¹³C DEPT, ¹H–¹H COSY, HMQC, HMBC, and NOESY spectra of **7** supported this structure.

This is the first report of the isolation of lanostane-type triterpenoids possessing a $\Delta^{20(21)}$ -unsaturated side-chain, **1** and **2**, from a natural source, although several $\Delta^{20(21)}$ -unsaturated dammarane-type triterpenoids have been reported in some higher plants.^{9–11} In addition, although several C-20-hydroxylated ganoderic acids, highly oxygenated lanostane-type triterpenoids possessing a C₈-side-chain, have been reported as constituents of *G. lucidum*,^{12–14} this is the first instance of the isolation of C-20-hydroxylated lanostane-type triterpenoids with a C₅-side-chain, **3–7**, from a natural source. The absolute configuration at C-20 of compounds **3–7** remained undetermined in this study.

Experimental Section

General Experimental Procedures. Crystallizations were performed in acetone-MeOH, and melting points were determined on a Yanagimoto micro melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO P-1030 polarimeter in acetone or in CHCl₃ at 25 °C. UV spectra, on a Shimadzu UV-2200 spectrometer, and IR spectra, on a JASCO FTIR-300E spectrometer, were recorded in MeOH and KBr disks, respectively. NMR spectra were recorded with a JEOL ECX-500 (1H: 500 MHz; 13C: 125 MHz) or with a JEOL ECA-600 (¹H: 600 MHz, ¹³C: 150 MHz) spectrometer in $CDCl_3$ or in C_5D_5N with tetramethylsilane as internal standard. Electron-ionization mass spectra (EIMS; 70 eV) and high-resolution EIMS (HREIMS) were recorded on a JEOL JMS-BU20 spectrometer using a direct inlet system. FABMS and HRFABMS were obtained with a JEOL JMS-BU20 spectrometer using glycerol as a matrix. Analytical TLC on silica gel (silica gel F_{254} , Merck; 10 × 10 cm) was developed using *n*-hexane–ethyl acetate (EtOAc)–acetic acid (AcOH) (50: 50:0.5, v/v/v). Silica gel (Kieselgel 60, 230–400 mesh, Merck) was used for open column chromatography. Reversed-phase preparative HPLC was carried out on a 25 cm \times 10 mm i.d.

	4. 0, 11, and 11,110 11,110			2/	0		t
	4		G		0		
C no.	δ_{C} $\delta_{\mathrm{H}^{d}}$	HMBC(H to C)	δ_{C} $\delta_{\mathrm{H}^{a}}$	HMBC(H to C)	δ_{C} $\delta_{\mathrm{H}^{d}}$	HMBC (H to C)	$\delta_{\rm C}$ $\delta_{{ m H}^a}$
1	34.6 t α : 1.74 ddd (5.6, 9.8, 1; β : 2.63 m	(3, 9) 2, 3, 9, 10, 19 2, 3, 10, 19	33.2 t α : 1.18 m β : 2.73 m	2, 19 2.3.5	$34.8 t \alpha$: 0.99 m β : 2.85 ddd (3.4. 3.6. 13.7	2, 3, 10) 2, 3, 10	34.4 t α : 0.96 ddd (4.3, 13.2, 14.3) β : 2.63 ddd (3.7, 3.7, 13.2)
5	33.8 t α : 2.52 ddd (5.6, 7.3, 18 β : 2.62 m	(.1) $(.1)$	27.3 t 1.71 (2H) m	4, 10	27.6 t 1.66 (2H) m	1, 3	27.4 t 1.65 (2H) m
3	215.1 s		77.4 d 3.26 dd (4.9, 11.2)	28, 29	78.2 d 3.21 dd (5.6, 10.7)	4, 28, 29	78.1 d 3.20 dd (5.1, 11.2)
4	47.0 s		$40.5 \mathrm{s}$		38.6 s		38.6 s
و ت	50.9 d 2.32 dd (2.7, 12.2) 37.9 + 9.48 dd (9.7–13.7)	$\begin{array}{c}4,\ 7,\ 10,\ 19,\ 28\\ {\scriptscriptstyle {F}}\ 7\ 8\end{array}$	51.4 d 1.56 dd (2.7, 14.4) 36.6 + 20.9 50 dd (9.7 13	4, 6, 10, 19, 28, 29	49.1 d 0.88 brd (13.7) $96.6 \pm \infty \cdot 2$ 19 br dd (8.5 12 2)	4, 7, 19, 29 5, 7, 8, 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Þ	2.73 dd (13.7, 14.9)	5, 7	β : 2.68 dd (13.6, 1	4.4) 5, 7	β : 1.62 m	5, 7, 8, 10	β : 1.65 m
7	199.1 s		198.0 s		66.0 d 4.80 dd (8.5, 8.8)	6, 8, 9, 30	66.1 d 4.83 dd (6.0, 13.5)
80	146.2 s		$151.4 \mathrm{~s}$		156.5 s		155.9 s
6	149.6 s		145.4 s		142.6 s		142.9 s
10	34.6 s		39.1 s		38.9 s		38.6 s
11	198.0 s		193.0 s		197.0 s		191.0 s
12	48.8 t α: 2.93 d (16.19 ^{α.} ο οε 3 (16.4)	11, 13 0 11 12	78.9 d 5.65 s	11, 13, 14, 18, COMe	50.2 t 2.81 (2H) s	9, 11, 13, 14, 17, 18	79.1 d 5.64 s
;	h: 2.00 u (10.4)	а, 11, 10					
13	44.3 s		48.2 s		45.4 s		49.8 s
14	57.1 s		58.9 s		59.3 s		61.0 s
15	204.9 s		203.9 s		215.7 s		214.5 s
16	$34.3 t \alpha$; $2.64 m$	15, 17	35.7 t α: 2.81 dd (9.8, 18	(1) 13, 14, 15, 17	$35.7 \text{ t} \alpha$: 2.61 m	13, 15, 17, 20	$37.1 \text{ t} \alpha$: 2.81 dd (8.6, 15.5)
	β : 2.28 dd (5.9, 14.9)	15, 17, 20	β : 2.28 dd (8.5, 18)	(1) 13, 14, 15, 17, 20	β : 2.49 m	13, 15, 17, 20	β : 2.52 dd (9.7, 16.9)
17	48.1 d 2.65 m	13, 15	49.2 d 2.93 dd (8.5, 9.8)	12, 13, 16, 18, 20, 21	49.5 d 2.52 m	13, 15, 16, 18, 20	50.2 d 2.84 dd (8.9, 8.9)
18	17.4 g 1.02 s	12, 13, 14	13.2 q 0.93 s	12, 13, 14	18.8 q 1.13 s	12, 13	14.2 g 1.08 s
19	$18.6 \hat{q} 1.28 \text{s}$	1, 5, 9, 10	$17.9~{ m q}~1.33~{ m s}$	1, 4, 5, 8	18.3 g 1.22 s	1, 5, 9, 10	18.5 g 1.26 s
20	86.0 s		86.6 s		85.9 s		86.7 s
21	26.3 q 1.50 s	17, 20, 22	26.1 q 1.48 s	17, 20	25.9 q 1.51 s	17, 20, 22	25.2 q 1.49 s
22	34.2 t 2.02 (1H), 2.07 (1H) m	20, 24 20, 23	34.5 t 2.05 (2H) m	17, 20, 21, 23, 24	34.2 t 2.06 (2H) m	20, 21, 23, 24	34.6 t 2.08 (2H) m
23	27.3 t 2.61 (1H) m	22, 24	28.1 t 2.52 (1H) m	22, 24	27.5 t. 2.54 (1H) m	20.22.24	28.3 t. 2.54 (1H) m
) I	2.67 (1H) m	22, 24	2.68 (1H) m	22, 24	2.64 (1H) m	20, 22, 24	2.70 (1H) m
24	175.8 s	×	175.6 s	×	175.9 s	х х	175.5 s
28	27.6 q 1.14 s	2, 4, 5, 29	27.9 q 1.03 s	3, 5, 10, 29	28.1 q 1.04 s	3, 4, 5, 29	28.1 q 1.04 s
29	20.3 g 1.12 s	3, 4, 28	15.5 g 0.89 s	3, 5, 10, 28	15.4 q 0.85 s	3, 4, 5, 28	15.4 g 0.86 s
30	21.3 q 1.68 s	8, 13, 14, 15	21.6 q 1.78 s	9, 13, 14, 15	24.7 \overline{q} 1.38 s	8, 13, 15, 18	24.5 q 1.54 s
COMe			170.1 s				170.3 s
COMe			21.0 q 2.26 s	COMe			21.2 q 2.26 s
a Fig	zures in parentheses denote J	values (hertz).					

Table 2. $^{13}\mathrm{C},^{1}\mathrm{H},$ and HMBC NMR Spectral Data for Triterpenoids $4-7~(\mathrm{CDCl}_3)$

C18 silica column (Pegasil ODS II column; Senshu Scientific Co., Ltd., Tokyo, Japan) at 25 °C eluting with MeOH-H₂O-AcOH (60:40:1, v/v/v) as mobile phase at 2 mL/min. A refractive index detector was used for reversed-phase HPLC.

Materials. Fruiting bodies of Ganoderma lucidum Karst (Polyporaceae) used in this study were described previously.⁴

Extraction and Isolation. Column chromatography on silica gel (1 kg) of the MeOH extract (30 g) of dried and chipped fruiting bodies of G. lucidum (373 g) which was eluted successively with *n*-hexanes-EtOAc [1:0 (2.5 L), 19:1 (6.5 L), 9:1 (2.5 L), 4:1 (3.0 L), 7:3 (10.0 L), 3:7 (9.0 L), 0:1 (7:0 L), v/v] gave six fractions.⁴ A portion (5.0 g) of the most polar fraction (6.9 g) eluted by *n*-hexanes-EtOAc [7:3, 3:7, and 0:1] was further chromatographed on silica gel (200 g) with a stepwise gradient of n-hexanes-EtOAc [9:1 (4.5 L), 4:1 (5.8 L), 7:3 (3.0 L), 1:1 (3.4 L), 2:3 (0.6 L), 3:7 (5.2 L), 1:4 (0.8 L), 0:1 (1.0 L), v/v], which yielded fractions A (R_f ca. 0.7 on TLC; 707 mg), B $(R_f \text{ ca. } 0.5; 916 \text{ mg})$, and C $(R_f \text{ ca. } 0.2; 1.83 \text{ g})$ from the eluates of *n*-hexanes-EtOAc (7:3), (1:1 and 2:3), and (3:7, 1:4, and 0:1), respectively.4 A portion (173 mg) of fraction B, separated by HPLC, afforded compound 2 (2.8 mg; $t_{\rm R}$ 27.6 min). HPLC of a portion (800 mg) of fraction C gave six compounds, 1 (2.0 mg; t_R 19.0 min), **3** (2.0 mg; t_R 13.0 min), **4** (4.0 mg; t_R 8.4 min), **5** $(2.6 \text{ mg}; t_{\text{R}} 15.0 \text{ min}), 6 (14.2 \text{ mg}; t_{\text{R}} 6.6 \text{ min}), \text{ and } 7 (2.6 \text{ mg}; t_{\text{R}} 15.0 \text{ min})$ 7.6 min).

20(21)-Dehydrolucidenic acid A (1): colorless needles, mp 135–137 °Č; $[\alpha]^{25}$ _D +69.9° (*c* 0.20, CHCl₃); UV (MeOH) λ_{max} 253 nm (log ϵ 3.78); IR ν_{max} 3445, 1735, 1702, 1659, 897 cm⁻¹; ¹H and ¹³C NMR, see Table 1; EIMS *m/z* 456 [M]⁺ (90), 438 $[M - H_2O]^+$ (75), 428 $[M - CO]^+$ (100), 397 (loss of C-23-C-24 by the cleavage of C-22-C-23 bond) (7), 395 (m/z 397-2H) (7), 369 (25), 355 $[M - side-chain (C_5H_7O_2) - 2H]^+$ (13), 331 (13), 318 (loss of ring A by the cleavage of C-5-C-6 and C-9-C-10 bonds) (85), 312 (98), 300 (loss of ring D plus 2H by the cleavage of C-13-C-17 and C-14-C-15 bonds) (20), 275 (55), 261 (25); HREIMS m/z 456.2512 (calcd for C₂₇H₃₆O₆ [M]⁺, 456 2511)

Methyl 20(21)-dehydrolucidenate A (2): colorless needles, mp 123–125 °C; [α]²⁵_D +151.2° (*c* 0.26, CHCl₃); UV (MeOH) $\lambda_{\rm max}$ 254 nm (log ϵ 3.88); IR $\nu_{\rm max}$ 3458, 2928, 1733, 1706, 1660, 899 cm⁻¹; ¹H and ¹³C NMR, see Table 1; EIMS m/z 470 [M]⁺ $(91), 455 [M - Me]^+ (19), 452 [M - H_2O]^+ (11), 442 [M - CO]^+$ (100), 397 (loss of C-23-C-24 by the cleavage of C-22-C-23 bond) (5), 369 (29), 355 [M - side-chain (C₅H₇O₂) - 2H]⁺ (19), 345 (13), 332 (loss of ring A by the cleavage of C-5–C-6 and C9-C10) (87), 304 (29), 300 (loss of ring D plus 2H by the cleavage of C-13–C-17 and C14–C15 bonds) (87), 285(20), 275(35), 261 (19); HREIMS m/z 470.2668 (calcd for C₂₈H₃₈O₆ [M]⁺, 470.2671).

20-Hydroxylucidenic acid D₂ (3): colorless needles, mp 123–125 °C; $[\alpha]^{25}_{D}$ +54.7°(c 0.10, CHCl₃); UV (MeOH) λ_{max} 254 nm (log ϵ 3.97); IR ν_{max} 3452, 1752, 1698 cm⁻¹; ¹H and ¹³C NMR, see Table 1; EIMS m/z 512 $[M - H_2O]^+$ (30), 470 $[M - H_2O]^+$ $HOAc]^+$ (100), 452 $[M - H_2O - HOAc]^+$ (10), 437 $[M - Me - Me]^+$ $\begin{array}{l} H_2O \,-\, HOAcl^+ \,(3),\, 427 \,\,(6),\, 413 \,\, [M - \, side-chain \,\, (C_5H_9O_3)]^+ \\ (5),\, 397 \,\, (4),\, 371 \,\, (m/z \,\, 413 - \, Me - \, CO \, + \, H) \,\, (15),\, 354 \,\, (m/z \,\, 413 \,\, H) \end{array}$ - HOAc + H) (18), 302 [M - C₁₁H₁₇O₅ (species formed by the cleavage of C-11-C-12, C-13-C-14, and C-16-C17 bonds) + H]⁺ (60), 169 $[C_{11}H_{17}O_5 - HOAc]^+$ (60); HREIMS *m*/*z* 512.2410 (calcd for $C_{29}H_{36}O_8$ [M - H₂O]⁺, 512.2411); FABMS m/z 553 $[M + Na]^+$

20-Hydroxylucidenic acid F (4): colorless needles, mp $162-164 \text{ °C}; [\alpha]^{25} + 128.6 \text{ °} (c \ 0.10, \text{ acetone}); UV (MeOH) \lambda_{max}$ 255 nm (log ϵ 3.99); IR $\nu_{\rm max}$ 3449, 1772, 1750, 1698, 1680 cm⁻¹ ¹H and ¹³C NMR, see Table 2; MS m/z 454 [M - H₂O]⁺ (100), $439 [M - H_2O - Me]^+ (7), 426 [M - COOH - H]^+ (7), 411 (8),$ 399 (5), 383 (5), 355 $[M - \text{side-chain} (C_5H_9O_3)]^+$ (7), 327 (m/z)355 – CO) (30), 306 (25) [loss of ring A (C_9H_{14}O) plus CO by the cleavage of C-5-C-6 and C-9-C-10 bonds], 300 (loss of ring

D by the cleavage of C-13-C-17 and C-14-C-15 bonds) (24), 285 (m/z 300 - Me) (7). HREIMS m/z 454.2355 (calcd for $C_{27}H_{34}O_6 [M - H_2O]^+$, 454.2355); FABMS *m*/*z* 495 [M + Na]^+. 20-Hydroxylucidenic acid E_2 (5): colorless needles, mp 147–149 °C; $[\alpha]^{25}_{\rm D}$ +78.0° (c 0.16, acetone); UV (MeOH) $\lambda_{\rm max}$ 255 nm (log ϵ 3.85); IR $\nu_{\rm max}$ 3466, 1753, 1697 cm $^{-1};$ EIMS m/z514 $[M - H_2O]^+$ (10), 472 $[M - HOAc]^+$ (22), 454 $[M - HOAc]^+$ $H_2O^{+}(10)$, 439 (*m/z* 454 – Me) (3), 415 [M – side-chain $(C_5H_9O_3)]^+$ (4), 373 (m/z 415 - Me - CO + H) (22), 356 (m/z 415 - HOAc + H) (13), 304 [M - C₁₁H₁₇O₅ (species formed by the cleavage of C-11-C-12, C-13-C-14, and C-16-C17 bonds) + H]⁺ (100), 169 $[C_{11}H_{17}O_5 - HOAc]^+$ (38). HREIMS m/z514.2566 (calcd for $C_{29}H_{38}O_8$ [M - H_2O]⁺, 514.2571); FABMS m/z 555 [M + Na]⁺.

20-Hydroxylucidenic acid N (6): colorless needles, mp 268–270 °C; $[\alpha]^{25}_{D}$ +150.4° (c 0.23, acetone); UV (MeOH) λ_{max} 255 nm (log ϵ 3.85); IR $\nu_{\rm max}$ 3434, 1771, 1721, 1661 cm^{-1}; $^1{\rm H}$ and ¹³C NMR, see Table 2; MS m/z 458 $[M - H_2O]^+$ (48), 440 $[M - 2H_2O]^+$ (10), 430 $[M - COOH - H]^+$ (100), 407 (4), 371 (9), 357 [M - side-chain $(C_5H_9O_3) - 2H]^+$ (4), 331 (m/z 357 -CO) (13), 318 [loss of ring A ($C_9H_{14}O$) by the cleavage of C-5-C-6 and C-9-C-10 bonds] (45), 304 (loss of ring D by the cleavage of C-13-C-17 and C-14-C-15 bonds) (10); HREIMS m/z 458.2668 (calcd for C₂₇H₃₈O₆ [M - H₂O]⁺, 458.2667); FABMS m/z 499 [M + Na]⁺.

20-Hydroxylucidenic acid P (7): colorless needles, mp 125–127 °C; $[\alpha]^{25}_{D}$ +77.7° (c 0.10, CHCl₃); UV (MeOH) λ_{max} 254 nm (log ϵ 3.87); IR $\nu_{\rm max}$ 3451, 1758, 1695 cm $^{-1}$; $^1\!{\rm H}$ and $^{13}\!{\rm C}$ NMR, see Table 2; MS m/z 516 $[M - H_2O]^+$ (7), 501 $[M - H_2O]^+$ $(Me]^{+}(2), 488 [M - COOH - H]^{+}(10), 474 [M - HOAc]^{+}(4),$ 456 $[M - HOAc - H_2O]^+$ (4), 441 (*m*/z 454 - Me) (2), 417 $[M - side-chain (C_5H_9O_3)]^+$ (1), 375 (*m*/z 417 - Me - CO + H) (10), 356 (m/z 415 - HOAc + H) (13), 306 [M - C₁₁H₁₇O₅ (species formed by the cleavage of C-11-C-12, C-13-C-14, and $C-16-C17 \text{ bonds}) + H]^+ (100), 169 [C_{11}H_{17}O_5 - HOAc]^+ (10);$ HREIMS m/z 516.2723 (calcd for $C_{29}H_{40}O_8$ [M - H_2O]⁺, 516.2722); FABMS m/z 557 [M + Na]⁺.

Acknowledgment. The authors are indebted to Dr. K. Koike (College of Pharmaceutical Sciences, Toho University, Chiba, Japan) for the optical rotation measurements.

References and Notes

- Namba, T. The Encyclopedia of Wakan-Yaku (Traditional Sino-Japanese Medicines) with Color Pictures, revised ed.; Hoikusya: Osaka, 1994; Vol. II, pp 244–250. (2) Min, B.-S.; Nakamura, N.; Miyashiro H.; Bae, K.-W.; Hattori, M.
- Wu, T. S.; Shi, L. S.; Kuo, S. C. J. Nat. Prod. 2001, 64, 1121–1122.
- Iwatsuki, K.; Akihisa, T.; Tokuda, H.; Ukiya, M.; Oshikubo, M.; Kimura, Y.; Asano, T.; Nomura, A.; Nishino, H. J. Nat. Prod. 2003, 66, 1582-1585.
- Akihisa, T.; Yasukawa, K. In Studies in Natural Products Chemistry, Vol. 25. Bioactive Natural Products (Part F); Atta-ur-Rahman, Ed.; Elsevier Science B.V.: Amsterdam, 2001; pp 43-87.
- Elsevier Science B.V.: Amsterdam, 2001; pp 43-87.
 (6) Akihisa, T.; Yasukawa, K.; Tokuda, H. In Studies in Natural Products Chemistry, Vol. 29. Bioactive Natural Products (Part J); Atta-ur-Rahman, Ed.; Elsevier Science B.V.: Amsterdam, 2003; pp 73-126.
 (7) Nishitoba, T.; Sato, J.; Kasai, T.; Kawagishi, H.; Sakamura, S. Agric. Biol. Chem. 1985, 49, 1793-1798.
 (8) Wu, T. S.; Shi, L. S.; Kuo, S. C.; Cherng, C. Y.; Tung, S. F.; Teng, C. M. J. Chin. Chem. Soc. 1997, 44, 157-161.
 (9) Yano, K.; Akihisa, T.; Kawaguchi, R.; Tamura, T.; Matsumoto, T. Phytochemistry 1992, 31, 1741-1746.
 (10) Akihisa, T.; Yasukawa, K.; Kimura, Y.; Takase, S.; Yamanouchi, S.; Tamura, T. Chem. Pharm. Bull. 1997, 45, 2016-2023.
 (11) Leong, Y.-W.; Harrison, L. J. Phytochemistry 1999, 50, 849-857.
 (12) Kikuchi, T.; Kanomi, S.; Kadota, S.; Murai, Y.; Tsubono, K.; Ogita, Z. Chem. Pharm. Bull. 1966, 34, 3695-3712.
 (13) Nishitoba, T.; Sato, H.; Sakamura, S. Phytochemistry 1987, 26, 1777-

- (13) Nishitoba, T.; Sato, H.; Sakamura, S. Phytochemistry 1987, 26, 1777-1784.
- (14) Ma, J.; Ye, Q.; Hua, Y.; Zhang, D.; Cooper, R.; Chang M. N.; Chang, J. Y.; Sun, H. H. J. Nat. Prod. 2002, 65, 72–75.

NP040230H